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ABSTRACT

The purpose of the present paper is to argue that ANOVA and related

methods should be taught using a general linear model (GLM)

approach, as against a classical ordinary sums of squares approach.

The GLM approach (Cohen, 1968; Knapp, 1978) can be defined as one

that emphasizes the linkages among conventional parametric methods

(e.g., t-tests, ANOVA, ANCOVA, R). The GLM approach emphasizes that

all classical parametric methods are least squares procedures that

implicitly or explicitly (a) use weights, (b) focus on latent

synthetic variables, and (c) yield effect sizes analogous to r2,

i.e., all classical analytic methods are correlational (Fan, 1992;

Knapp, 1978; Thompson, 1988a).

The case for teaching statistics using a GLM conceptual

framework is based on four contentions. First, a GLM instructional

approach provides a unifying conceptual framework that better

enables students to understand analytic methods in the context of

how the methods are really alike and how they really differ.

Second, the GLM approach to analysis tends to produce a better

match between the researcher's analytic model and the researcher's

model of reality, thus yielding more valid results, and so this

approach should be emphasized in instruction. Third, the GLM

emphasis on planned contrasts, as against omnibus tests followed by

unplanned comparisons, helps students understand the critical role

of reflective thought as the critical ingredient in good research.

Fourth, a GLM instructional approach helps students see that

focusing on variance-accounted-for (or other) effect sizes, as

against statistical significance, is important in all analyses.
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As defined by Gage (1963, p. 95), "Paradigms are models,

patterns, or schemata. Paradigms are not the theories; they are

rather ways of thinking or patterns for research." Tuthill and

Ashton (1983, p. 7) note that

A scientific paradigm can be thought of as a

socially shared cognitive schema. Just as our

cognitive schema provide us, as individuals, with a

way of making sense of the world around us, a

scientific paradigm provides a group of scientists

with a way of collectively making sense of their

scientific world.

But scientists usually do not consciously recognize the

influence of their paradigms. As Lincoln and Guba (1985, pp. 19-20)

note:

If it is difficult for a fish to understand water

because it has spent all its life in it, so it is

difficult for scientists... to understand what their

basic axioms or assumptions might be and what impact

those axioms and assumptions have upon everyday

thinking and lifestyle.

Even though researchers are usually unaware of paradigm

influences, paradigms are nevertheless potent influences in that

they tell us what we need to think about, and also the things about

which we need not think. As Patton (1975, p. 9) suggests,

Paradigms are normative, they tell the practitioner

what to do without the necessity of long existential

1
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or epistemological consideration. But it is this

aspect of a paradigm that constitutes both its

strength and its weaknesses--its strength in that it

makes action possible; its weakness in that the very

reason for action is hidden in the unquestioned

assumptions of the paradigm.

With respect to ANOVA, Kerlinger (1986, p. 203) has noted

that, "The analysis of variance is not just a statistical method.

It is an approach and a way of thinking." Viewed as a paradigm,

CVA methods are also a way of not thinking.

The purpose of the present paper is to argue that OVA methods

should be taught using a general linear model (GLM) approach, as

against a classical ordinary sums of squares approach. The GLM

approach (Cohen, 1S68; Knapp, 1978) can be defined as one that

emphasizes the linkages among conventional parametric methods

(e.g., t-tests, ANOVA, ANCOVA, R). The GLM approach emphasizes that

all classical parametric methods are least squares procedures that

implicitly or explicitly (a) use weights, (b) focus on latent

synthetic variables, and (c) yield effect sizes analogous to r2,

i.e., all classical analytic methods are correlational (Fan, 1992;

Knapp 1978; Thompson, 1988a).

The case for teaching statistics using a. GLM conceptual

framework is based on four contentions:

1. A GLM instructional approach provides a unifying conceptual

framework that better enables students to understand analytic

methods in the context of how the methods are really alike and
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how they really differ.

2. The GLM approach to analysis tends to produce a better match

between the researcher's analytic model and the researcher's

model of reality, thus yielding more valid results, and so

this approach should be emphasized in instruction.

3. The GLM emphasis on planned contrasts, as against omnibus

tests followed by unplanned comparisons, helps students

understand the critical role of reflective thought as the

critical ingredient in good research.

4. A GLM instructional approach helps students see that focusing

on variance-accounted-for (or other) effect sizes, as against

statistical significance, is important in all analyses.

Of course, in arguing against a classical sums of squares

approach to instruction, it is important not to make an "is/ought"

or "should/would" error. Arguing that something "ought" to be done

in the future simply because something else that is incorrect "is"

being done now, and perhaps otherwise "would" not be corrected, is

logically inconsistent. As Strike (1979, p. 13) explains,

To deduce a proposition with an "ought" in it from

premises containing only "is" assertions is to get

something in the conclusion not contained in the

premises, something impossible in a valid deductive

argument.

Hudson (1969) offers a book on the "is/ought" fallacy.

Contentions

Contention #1: A GLM instructional approach provides a unifying

3
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conceptual framework that better enables students

to understand analytic methods in the context of

how the methods are really alike and how they

really differ.

In a seminal article, Cohen (1968, p. 426) noted that ANOVA

and ANCOVA are special cases of multiple regression analysis, and

argued that in this realization "lie possibilities for more

relevant and., therefore more powerful exploitation of research

data." Since that time researchers have increasingly recognized

that conventional multiple regression analysis of data as they were

initially collected (no conversion of intervally scaled independent

variables into dichotomies or trichotomies) does not discard

information or distort reality, and that the general linear model

...can be used equally well in experimental or non-

experimental research. It can handle continuous and

categorical variables. It can handle two, three,

four, or more independent variables... Finally, as

we will abundantly show, multiple regression

analysis can do anything the analysis of variance

does--sums of squares, mean squares, F ratios--and

more. (Kerlinger & Pedhazur, 1973, p. 3)

However, canonical correlation analysis, and not regression

analysis, is the most general case of the classical parametric

general linear model (Baggaley, 1981, p. 129; Fornell, 1978, p.

168). In an important article, Knapp (1978, p. 410) demonstrated

this in some mathematical detail and concluded that "virtually all

4
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of the commonly encountered tests of significance can be treated as

special cases of canonical correlation analysis." Thompson (1988a,

1991a) and Fan (1992) illustrate how canonical correlation analysis

can be employed to implement all the parametric tests that

canonical methods subsume as special cases.

The GLM approach inherently emphasizes on the truth that all,

parametric analyses, including OVA analyses, are correlational.

Traditionally, researchers have frequently employed OVA methods

when they had data from experimental designs. That was fine.

However, many researchers then unconsciously associated the

analytic method with the characteristics inuring from the design,

and not from the analysis. It is experimental design that allows

causal inferences, not the analytic method that is used with data

from this design. This was not fine. Because the confusion was

often unconscious, the illogic was even more powerful as an

influence on analytic preferences.

Humphreys (1978, p. 873) notes that many researchers are prone

to unconsciously and erroneously associate ANOVA with the power of

experimental designs:

The basic fact is that a measure of individual

differences is not an independent variable, and it

does not become one by categorizing the scores and

treating the categories as if they defined a

variable under experimental control in a factorially

designed analysis of variance.

Similarly, Humphreys and Fleishman (1974, p. 468) note that

5
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categorizing variables in a nonexperimental design using an. ANOVA

analysis "not infrequently produces in both the investigator and

his audience the illusion that he has experimental control over the

independent variable. Nothing could be more wrong."

As Keppel and Zedeck (1989) argue,

We maintain that whereas it is useful to speak in

terms of experimental and correlational designs, it

is unnecessary to maintain the distinction between

experimental and correlational statistics (ANOVA and

MRC, respectively), since the results are

statistically identical. This latter point will be

repeatedly stated and demonstrated throughout this

book. (p. 4, emphasis in original)

Traditionally, confusion that OVA is an experimental analysis

led to very frequent use of OVA methods within the social sciences

(e.g., Edgington, 1974). Fortunately, the emergence of GLM

instructional approaches has helped some researchers see that all

analytic methods are correlational, and has led to less frequent

use of OVA methods (Elmore & Woehlke, 1988; Goodwin & Goodwin,

1985; Willson, 1982). Thus, the GLM approach provides a unifying

conceptual framework within which students can compare and contrast

analytic choices, and can better understand what they're really

doing when they implement a given choice.

Contention #2: The GLM approach to analysis tends to produce a

better match between the researcher's analytic

model and the researcher's model of reality, thus

6

9



yielding more valid results, and so this approach

should be emphasized in instruction.

As Thompson (1991b) noted,

too few researchers recognize that in all analyses

we inherently, invoke both a presumptive model of

reality and an analytic model. When the two don't

match, the analysis doesn't help us understand the

reality we believe exists. (p. 1072)

The OVA analytic model requires that all predictors be nominally

scaled, even if they must be converted from original interval

scale. Most researchers use balanced OVA designs so that their

effects will be uncorrelated, and so that their analyses will be

more robust to the violation of the homogeneity of variance

assumption. Thus, the analytic model presumes that all predictors

are nominally scaled, that all predictor main and interaction

effects are uncorrelated, and that the distributions of scores on

the nominal predictor variables are flat or rectangular.

Unfortunately, most researchers' models of reality do not

match this analytic model very well. The most common nominally

scaled predictor effects are experimental condition and gender;

while gender is that very rare variable on which virtually everyone

both knows their status and will actually even honestly report,

gender may not be a particularly useful independent variable in

most studies.

Even most experimental studies invoke intervally scaled

"aptitude" variables (e.g., IQ scores in a study with academic

7
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achievement as a dependent variable), to conduct the aptitude-

treatment interaction (ATI) analyses recommended so persuasively by

Cronbach (1957, 1975) in his 1957 APA Presidential address. But as

Cliff (1987, p. 130) notes, the practice of discarding variance on

intervally scaled predictor variables to perform OVA analyses

creates problems in almost all cases:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa. In

addition, the "barely highs" are classified the same

as the "very highs," even though they are different.

Therefore, reducing a reliable variable to a

dichotomy makes the variable more unreliable, not

less.

Discarding variance is not generally good research practice

(Thompson, 1988c, 1988d). As Kerlinger (1986, p. 558) explains,

...partitioning a continuous variable into a

dichotomy or trichotomy throws information away...

To reduce a set of values with a relatively wide

range to a dichotomy is to reduce its variance and

thus its possible correlation with other variables.

A good rule of research data analysis, therefore,

is: Do not reduce continuous variables to

partitioned variables (dichotomies, trichotomies,

etc.).unless compelled to do so by circumstances or

the nature of the data (seriously skewed, bimodal,

8
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etc.).

Kerlinger (1986, p. 558) notes that variance is the "stuff" on

which all analysis is based. Discarding variance by categorizing

intervally-scaled variables amounts to "squandering of information"

(Cohen, 1968, p. 441). As Pedhazur (1982, pp. 452-453) notes,

Categorization of attribute variables is all too

frequently resorted to in the social sciences... It

is possible that some of the conflicting evidence in

the research literature of a given area may be

attributed to the practice of categorization of

continuous variables... Categorization leads to a

loss of information, and consequently to a less

sensitive analysis.

Contention #3: The GLM emphasis on planned contrasts, as against

followed by

helps students understand the critical role of

reflective thought as the critical ingredient in

good research.

There are two reasons why researchers generally prefer the use

of planned comparisons to the use of unplanned comparisons (cf.

Benton, 1991; Tucker, 1991). First, as noted by numerous

researchers, planned comparisons offer more power against making

Type II errors:

procedures recommended for a priori orthogonal

comparisons are more powerful than procedures

recommended for a priori nonorthogonal and a

9
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posteriori comparisons. That is, the former

procedures are more likely to detect real

differences among means. (Kirk, 1968, p. 95)

The probability of test's detecting that... [the

contrast's effect] is not zero [i.e., is

statistically significant] is greater with a planned

than with an unplanned comparison on the same sample

means. Thus, for any particular comparison, the test

is more powerful when planned than when post hoc.

(Hays, 1981, p. 438)

Post hoc tests protect us from making too many Type

I errors by requiring a bigger difference before

declaring it to be significant than do planned

comparisons. But this protection tends to be too

conservative for planned comparisons, thereby

lowering the power of the test. (Minium & Clarke,

1982, p. 322)

The tests of significance for a priori, or planned,

comparisons are more powerful than those for post

hoc comparisons. In other words, it is possible for

a specific comparison to be not significant when

tested by post hoc methods but significant when

tested by a priori methods. (Pedhazur, 1982, pp.

10

1.3



304-305 (also Kerlinger & Pedhazur, 1973, p. 131))

Post hoc comparisons must always follow the finding

of a significant overall F-value... There are no

limits to the number of combinations that can be

tested post hoc, but none of these procedures has

the power of planned comparison tests for detecting

statistical significance. (Sowell & Casey, 1982, p.

119)

The test of planned subhypotheses is more powerful

than the test of post hoc subhypotheses. For this

reason, we should make planned comparisons whenever

possible in planning the design of research within

the ANOVA context. (Glasnapp & Poggio, 1985, p. 474)

Second, and perhaps even more importantly, planned comparisons

tend to force the researcher to be more thoughtful in conducting

research, since the number of planned comparisons that can be

tested is limited. As Snodgrass, Levy-Berger and Haydon (1985, p.

386) suggest, "The experimenter who carries out post hoc

comparisons often has a rather diffuse hypothesis about what the

effects of the manipulation should be." Keppel (1982, p. 165) notes

that, "Planned comparisons are usually the motivating force behind

an experiment. These comparisons are targeted from the start of the

investigation and represent an interest in particular combinations

of conditions--not in the overall experiment." In summary, as
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Kerlinger (1986, p. 219) suggests, "While post hoc tests are

important in actual research, especially for exploring one's data

and for getting leads for future research, the method of planned

comparisons is perhaps more important scientifically."

It is important to note that most researchers have fairly good

notions of what their studies will show, at least when research is

grounded in theoretical constructs or in previous empirical

findings, so most researchers are able to suggest planned

comparisons prior to data collection. Thus, Huberty and Morris

(1988, p. 576) maintain that

only very few research situations would preclude a

researcher from specifying all contrasts of interest

prior to an examination of the outcome measures

and/or the outcome 'cell' means.

A Concrete Heuristic Example of Power

Just as some researchers benefit from seeing heuristic

demonstrations that all parametric significance testing procedures

are subsumed by and can be conducted with canonical correlation

analysis (Thompson, 1988a, 1991a), it may be helpful to present a

hypothetical analysis demonstrating that planned orthogonal

comparisons have greater statistical power against Type II error

than testing omnibus hypotheses and then exploring statistically

significant effects with unplanned comparisons. The data presented

in Table 1 can be utilized for this purpose. Table 2 presents a

conventional,one-way ANOVA keyout associated with the Table 1 data.

Even if the researcher conducted unplanned post hoc tests in the
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absence of a statistically significant main effect, none of the

unplanned tests would result in a statistically significant

comparison for these data. However, as noted in Table 3, a

statistically significant (R < 0.01) result is isolated for the

planned contrast hypothesis that the mean attitude-toward-school

score of the two school board members differs from the mean for the

remaining 10 subjects.

INSERT TABLES 1 THROUGH 3 ABOUT HERE.

The Use of Planned Comparisons in Lieu of Omnibus Tests

Some researchers suggest that at least some unplanned

comparisons can be made even if an omnibus effect is not

statistically significant. For example, Spence, Cotton, Underwood

and Duncan (1983, p. 215) suggest that,

The Tukey hsd [honestly significant difference test]

usually is performed only if the F obtained in the

analysis of variance is significant, but it

theoretically permissible to perform whatever the

significance of F.

Similarly, Hays (1981, p. 434) notes:

This statement is not to be interpreted to mean that

post hoc comparisons are somehow illegal or immoral

if the original F test is not significant at the

required alpha level... What one cannot do is to

attach an unequivocal probability statement to such

post hoc comparisons, unless the conditions

13
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underlying the method have been met.

However, the preponderant view regarding use of unplanned post hoc

tests is expressed by Gravetter and Wallnau (1985, p. 423):

These [a posteriori] tests attempt to control the

overall alpha level by making the adjustments for

the number of different samples (potential

comparisons) in the experiment. To justify a

posteriori tests, the F-ratio from the overall ANOVA

must be significant.

On the other hand, with respect to the use of planned

comparisons, "Most statisticians agree that planned t tests between

means are appropriate, even when the overall F is insignificant"

(Clayton, 1984, p. 193). Snodgrass, Levy-Berger and Haydon (1985,

p. 386) concur:

For planned comparisons, it is not necessary for the

overall ANOVA to be significant in order to carry

them out... Post hoc comparisons, on the other hand,

may not be carried out unless the overall ANOVA is

significant.

Gravetter and Wallnau (1985, p. 423) agree that, "Planned

comparisons can be made even when the overall F-ratio is not

significant."

In fact, "It is not necessary to perform an over-all test of

significance prior to carrying out planned orthogonal t tests"

(Kirk, 1968,. p. 73, emphasis added). As Hays (1981, p. 426)

suggests,
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The F test gives evidence to let us judge if all of

a set of J - 1 such orthogonal comparisons are

simultaneously zero in the populations. For this

reason, if planned orthogonal comparisons are tested

separately, the overall F test is not carried out,

and vice versa.

Swaminathan (1989, p. 231, emphasis added) presents the same

argument with respect to the MANOVA case:

The often advocated procedure of following up the

rejection of the null hypothesis with a more

powerful multiple comparison procedure should be

discouraged. First, the overall rejection of the

null hypothesis does not guarantee any meaningful

contrast among the means will be significant, as our

example showed. Second..., significant contrasts may

be found even when the null hypothesis would not

have been rejected. Third, follow up multiple

comparison procedures which are unrelated to the

overall test result in an inflation of the

experiment-wise error rate. If multiple comparisons

are of primary interest, a suitable multiple

comparison procedure can be used without first

performing an overall test.

Given that planned tests have greater power against Type II

error than ,either unplanned tests or omnibus tests, planned

comparisons should be employed in most research studies using OVA

15
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methods. Planned tests should be employed in lieu of omnibus tests.

Rosnow and Rosenthal (1989, p. 1281) quite rightly deplore the

"overreliance on omnibus tests of diffuse hypotheses that although

providing protection for some investigators from the dangers of

'data mining' with multiple tests performed as if each were the

only one considered", because omnibus tests generally do not:

tell us anything we really want to know. As Abelson

(1962) pointed out long ago in the case of analysis

of variance (ANOVA), the problem is that when the

null hypothesis is accepted, it is frequently

because of the insensitive omnibus character of the

standard F-test as much as by reason of sizable

error variance. All the while that a particular

predicted pattern among the means is evident to the

naked eye the standard F-test is often

insufficiently illuminating to reject the null

hypothesis that several means are statistically

identical.

Planned contrasts (Rosnow & Rosenthal, 1989, p. 1281) encourage

precision of thought and theory, and "usually result in increased

power and greater clarity of substantive interpretation."

The problem with unplanned contrasts isn't that they make

corrections for tests researchers look at and care about, the

problem is that these methods make corrections even for tests that

researchers don't care about and which they refuse to consult or,

interpret,. As Thompson (1991b) notes,
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In our example 6 x 4 x 2 design, the Tukey test for

the A-way main effect corrects for making all

possible 15 ((6 x (6 - 1)) / 2) pairwise

comparisons, even if we're only interested in four

of them. Perhaps some people are willing to pay the

price for looking in someone else's window, but very

few of us want to go to jail for looking in a window

we actually didn't look in, and in which we have

absolutely no interest. We should be equally prudent

as regards contrasts. (p. 507)

Contention #4: A GLM instructional approach helps students see

that focusing on variance-accounted-for (or other)

effect sizes, as against statistical significance,

is important in all analyses.

The propensity to overinterpret significance tests continues,

notwithstanding several decades of effort "to exorcise the null

hypothesis" (Cronbach, 1975, p. 124). Thompson (1989a, p. 66) notes

that

few statistical procedures have caused more

confusion within the research community than

statistical significance testing... Because

statistical significance is largely an artifact of

sample size, significance decisions... must be

interpreted in the context of sample size.

Rosnow and Rosenthal (1989, p. 1277) comment on contemporary

overemphasis on significance tests:
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Even

It may not be an exaggeration to say that for many

PhD students, for whom the .05 alpha has acquired an

almost ontological mystique, it can mean joy, a

doctoral degree, and a tenure-track position at a

major university if their dissertation p is less

than .05.... [But] surely, God loves the .06 nearly

as much as the .05 [level].

Thompson (1987b) explores the consequences of these problems.

sophisticated authors of prominent textbooks are sometimes not

quite sure what role significance tests should play in multivariate

analysis (Thompson, 1987a, 1988f), though doctoral students may be

disproportionately susceptible to excessive awe for significance

tests (Eason & Daniel, 1989; Thompson, 1988b). Recent important

treatments of these issues are also offered by Huberty (1987) and

by Kupfersmid (1988).

Researchers who have had the fortunate experience of working

with large samples (cf. Kaiser, 1976) soon realize that virtually

all null hypotheses will be rejected, since "the null hypothesis of

no difference is almost never exactly true in the population"

(Thompson, 1987b, p. 14). As Meehl (1978, p. 822) notes, "As I

believe is generally recognized by statisticians today and by

thoughtful social scientists, the null hypothesis, taken literally,

is always false." Thus Hays (1981, p. 293) argues that "virtually

any study can be made to show significant results if one uses

enough subjects." Thompson (1992b) summarizes the implication:

Statistical significance testing can involve a
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tautological logic in which tired researchers,

having collected data from hundreds of subjects,

then conduct a statistical test to evaluate whether

there were a lot of subjects, which the researchers

already know, because they collected the data and

[already] know they're tired. (p. 436)

These considerations suggest that researchers out to interpret

results from their analyses by considering effect sizes as well as

significance test results (Huberty, 1987), or by interpreting

significance in the context of sample size (i.e., at what smaller

sample size would this result have been no longer significant?--

Thompson, 1989a), or by conducting analyses that investigate the

replicability of results (Thompson, 1989b, in press). Replicability

analyses include the cross-validation logics discussed by Thompson

(1984, pp. 41-47, 1989b), or variants of bootstrap (Diaconis &

Efron, 1983; Efron, 1979; Lunneborg, 1987, Thompson, 1988e, 1992a)

or jackknife (e.g., Crask & Perreault, 1977; Daniel, 1989) methods.

The GLM perspective forces researchers to recognize that all

conventional parametric analyses capitalize on sampling error,

because all these methods are least squares methods that optimize

a variance-accounted-for parameter estimate. The less enlightened

researcher may express an ill-founded preference for OVA methods

because of a misconception that analyses explicitly named after

correlation coefficients capitalize on sampling error, while OVA

and other analyses purportedly do not. Nothing could be more wrong.

Evaluating the generalizability of analytic results is important
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whenever any parametric least-squares methods (t-tests, OVA, etc.)

are used, because "one tends to take advantage of chance (both

sampling and measurement errors) in any situation where something

is optimized from the data at hand" (Nunnally, 1978, p. 298).

It is ironic that researchers who are blinded by the paradigm

influences which create an excessive reliance on significance tests

are often hoisted on their own petards. The researcher desirous of

statistically significant effects for substantive main and

interaction effects will quite reasonably employ the largest sample

possible so as to achieve the hoped-for results. Regrettably, large

samples that tend to yield significance for substantive tests also

tend to yield statistically significant results leading to

rejection of assumption null hypotheses, as in the test of equality

of dependent variable variances across groups required by the ANOVA

homogeneity of variance assumption.

Few, if any, researchers would ever interpret a bivariate r,

a multiple R, or a canonical correlation (Ec) study without

focusing attention on a variance-accounted-for statistic, such as

r2, R2, or &2 adjusted for shrinkage (Thompson, 1990). A GLM

perspective forces students to acknowledge that analogous

statistics (e.g., eta2, omega2) are available for all analyses,

including OVA analyses (Carter, 1979; Snyder & Lawson, in press).

It is inconsistent to insist that variance-accounted-for

statistics must be interpreted for selected analytic methods, and

to then ever'decline to interpret variance-accounted-for (or some

kind of effect size) estimates when using other analytic methods
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that are co-equal partners (Fan, 1992; Knapp, 1978) in the same

family of GLM analyses. The GLM approach to instruction and to

thinking can be a powerful paradigm to help researchers overcome

the tendency of OVA paradigm to encourage researchers to not think.
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Table 1
Hypothetical Data for Attitudes Toward School Study (n=12)

Group LEVEL ID DV Cl
Contrast

C2 C3 C4 C5
Students 1 1 10 -1 -1 -1 -1 -1

2 20 -1 -1 -1 -1 -1
Teacher Aides 2 3 10 1 -1 -1 -1 -1

4 20 1 -1 -1 -1 -1
Teachers 3 5 10 0 2 -1 -1 -1

6 20 0 2 -1 -1 -1
Principals 4 7 10 0 0 3 -1 -1

8 20 0 0 3 -1 -1
Superintendents 5 9 10 0 0 0 4 -1

10 20 0 0 0 4 -1
Board Members 11 25 0 0 0 0 5

12 35 0 0 0 0 5

Table 2
One-Way ANOVA Results

Source SOS df
Mean
Square F P

eta
Square

Between 375.0000 5 75.0000 1.5000 .3155 .55556
Error 300.0000 6 50.0000
Total 675.0000 11

Table 3
Planned Comparison Results

Contrast Mean eta
Source SOS df Square F P Square
C1 .0000 1 .0000 0.0000 .00000
C2 .0000 1 .0000 0.0000 .00000
C3 .0000 1 .0000 0.0000 .00000
C4 .0000 1 .0000 0.0000 .00000
C5 375.0000 1 375.0000 12.5000 .0054 .55556
Error 300.0000 6 50.0000
Total 675.0000 11
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APPENDIX A
Selected SPSS-X Control Cards

TITLE ******OMNIBUS no POSTHOC no A PRIORI yes'
FILE HANDLE BT /NAME= 'APRIORI.DTA'
DATA LIST FILE=BT/LEV 1 DV 2-4
COMPUTE C1=0
COMPUTE C2=0
COMPUTE C3=0
COMPUTE C4=0
IF (LEV EQ 2)C1=1
IF (LEV EQ 1) C1=-1
IF (LEV EQ 3)C2=2
IF (LEV LT 3) C2=-1
IF (LEV EQ 4) C3=3
IF (LEV LT 4)C3=-1
IF (LEV EQ 5)C4=4
IF (LEV LT 5)C4=-1
IF (LEV EQ 6)C5=5
IF (LEV LT 6)C5=-1
REGRESSION VARIABLES=DV C1 TO C5/DESCRIPTIVES=ALL/

CRITERIA=PIN(.95) POUT(.999) TOLERANCE(.00001)/DEPENDENT=DV/
ENTER C5/ENTER C4/ENTER C3/ENTER C2/ENTER C1/
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